## Coulomb excitation close to <sup>100</sup>Sn

J. Cederkäll

Department of Physics Lund University

May 3, 2010



#### Lund-GSI collaboration @ISOLDE/GSI

Result of RIB activities in the <sup>100</sup>Sn region so far:

- <sup>108</sup>Sn:Phys. Rev. C 72, 061305 (2005)
- <sup>110</sup>Sn: Phys. Rev. Lett. 98, 172501 (2007)
- <sup>106,108</sup>Sn: Phys. Rev. Lett. 101, 012502 (2008)
- <sup>100,102,104</sup>Cd: Phys. Rev. C 80, 054302 (2009)
- <sup>106,108</sup>In multiplets: Eur. Phys. J. A (2010)



・ロト ・ 同ト ・ ヨト ・ ヨ

## Sn: the low lying energy levels





A B > A B >

э

æ

#### Seniority: a broken-pair model

Seniority in  $j^n$ :  $S_J = \frac{1}{2} \sum (-1)^{j-m} a_{jm}^+ a_{j,-m}^+$  creates a pair of nucleons coupled to J = 0.

Quasi-spin operators form an SU(2) Lie group. Simple relations follow:

- Constant 2<sup>+</sup> energy
- Simple B(E2) trend as function of shell filling







#### Generalized Seniority: an overview

With the inclusion of several orbits, as for the Sn-chain, the group structure is *destroyed*:

$$S^{+} = \sum_{j} \alpha_{j} S_{j}^{+}$$
(1)

Some features of the seniority scheme are retained:

- ► *E*(2<sup>+</sup>) − *E*(0<sup>+</sup>) difference
- Binding- and separation energies

But not the general expressions for matrix elements of tensor operators.



#### Generalized seniority in the Sn isotopes

Almost constant  $E(2^+) - E(0^+)$  accross the chain



LUND

◆ロ▶ ◆課 ▶ ◆理 ▶ ◆理 ▶ ○理 ○の)

#### Generalized seniority in the Sn isotopes





э

(日)

## Prior experimental knowledge (2006-2007)





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### $\gamma$ -ray energy spectrum Prompt + Doppler corrected <sup>110</sup>Sn projectile





э

(日)

#### $\gamma$ -ray energy spectrum Prompt + Doppler corrected <sup>58</sup>Ni target





#### Survey of our experiments The neutron-deficient Sn isotopes

Measured 3 B(E2) values





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 の

#### Cd: Low lying energy levels More complex target structure





-2

(日)

## Cd - isotopes: slightly different analysis

1. For the Sn isotopes  $Q(2^+) = 0$  was assumed based on measurements in stable Sn. The same does not hold for the light Cd isotopes. This due to the two proton-holes in the <sup>100</sup>Sn core. The non-zero *Q* has an impact on the measured cross section:

$$\sigma_{E2} = \sigma_R \left[ \kappa_1(\theta_{c.m.}, \xi) B(E2) (1 + \kappa_2(\theta_{c.m.}, \xi) Q(2_1^+)) \right]$$
(2)

**Analysis requirement:** Minimum two measurements and simulation to clarify the resulting Doppler correction

- <sup>109</sup>Ag -target
- The kinematical branches of the scattered projectile and target nuclei overlap.
- <sup>64</sup>Zn -target (two angular regions measured)



## Experimental γ-ray energy spectrum <sup>102</sup>Cd+<sup>64</sup>Zn





イロト イポト イヨト イヨト

# Experimental $\gamma$ -ray energy spectrum <sup>104</sup>Cd+<sup>109</sup>Ag





イロト イポト イヨト イヨト

# Likelihood approach of combining all experimental measurements

The projectile matrix elements  $\langle 0_{gs}^+ || E2 || 2_1^+ \rangle$  and  $\langle 2_1^+ || E2 || 2_1^+ \rangle$ , are extracted using a maximum likelihood approach. The likelihood,  $\mathcal{L}$ , is a function of the nuclear parameters B(E2) and  $Q(2_1^+)$ . It is defined as a product of probability distributions,  $P_k$ , one for each measurement.

$$\mathcal{L}(B,Q) = \prod_{k \in [Zn, Ag, \tau]} P_k(B,Q)$$
(3)

In the numerical analysis,  $P_k$  is approximated by a Gaussian probability distribution along the gradient of the contour curve of the *k*-th measurement. The final B(E2) and  $Q(2^+_1)$  values,  $\hat{B}$  and  $\hat{Q}$ , maximize the normalized likelihood function.



# Probabilty contours: <sup>104</sup>Cd





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Likelihood surface: <sup>104</sup>Cd





#### Likelihood surface: <sup>104</sup>Cd





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ・臣・の

Result: B(E2) and  $Q(2^+_1)$  values in <sup>100,102,104</sup>Cd

|                   | au(2 <sup>+</sup> <sub>1</sub> ) Included | $B(E2;0^+_{gs} ightarrow 2^+_1)$ / $\mathrm{e}^2\mathrm{b}^2$ | <i>Q</i> (2 <sup>+</sup> <sub>1</sub> ) / eb |
|-------------------|-------------------------------------------|---------------------------------------------------------------|----------------------------------------------|
| <sup>104</sup> Cd | No                                        | $0.33 \pm 0.01 \pm 0.02$                                      | $0.06 \pm 0.10 \pm 0.11$                     |
|                   | Yes                                       | $0.39\pm0.01$                                                 | $-0.52\pm0.19$                               |
| <sup>102</sup> Cd | No                                        | $0.28 \pm 0.02 \pm 0.02$                                      | $0.22 \pm 0.11 \pm 0.15$                     |
|                   | Yes                                       | $\textbf{0.28} \pm \textbf{0.04}$                             | $\textbf{0.22}\pm\textbf{0.43}$              |
| <sup>100</sup> Cd | No                                        | ≤ <b>0.28</b>                                                 | 0.0 <sup>1</sup>                             |



æ

<sup>1</sup>Fixed in the analysis in order to extract the corresponding B(E2).

## Survey of our experiments

The neutron-deficient Cd isotopes

Measured 3 B(E2) values





・ロト・西ト・モン・モン・

# Survey of our experiments

The neutron-deficient Cd isotopes

Shell-model vs experiment





◆□▶ ◆聞▶ ◆臣▶ ◆臣▶ ○臣○

# Survey of our experiments

The neutron-deficient Cd isotopes

and 2  $Q(2^+)$  values





◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 →

### Summary

- The B(E2) values in the light even-mass Sn isotopes deviate from large scale shell-model predictions. This indicates the need for further core-polarization terms in the effective interaction.
- The B(E2) and Q(2<sup>+</sup><sub>1</sub>) values in the light Cd isotopes do not deviate conspicuously from what is expected when approaching a closed shell although an effect is present.



・ロット (雪)・ (日)・ (日)・

#### Yields from LISE++ and MOCADI

Accepted experiment S372 (fall 2010). 15 shifts with primary <sup>124</sup>Xe beam.

|                   | <sup>104</sup> Sn          |        | <sup>106</sup> Sn          |        | <sup>100</sup> Cd          |        |
|-------------------|----------------------------|--------|----------------------------|--------|----------------------------|--------|
| Fragment          | setting (s <sup>-1</sup> ) | Energy | setting (s <sup>-1</sup> ) | Energy | setting (s <sup>-1</sup> ) | Energy |
| <sup>103</sup> Sn | 12                         | 119    | -                          | -      | 4                          | 127    |
| <sup>104</sup> Sn | 287                        | 110    | 1                          | 146    | 26                         | 116    |
| <sup>105</sup> Sn | 1731                       | 101    | 260                        | 135    | 1                          | 105    |
| <sup>106</sup> Sn | 1965                       | 90     | 4255                       | 125    | -                          | -      |
| <sup>107</sup> Sn | 141                        | 76     | 6003                       | 114    | -                          | -      |
| <sup>101</sup> In | 16                         | 133    | -                          | -      | 18                         | 139    |
| <sup>102</sup> In | 504                        | 122    | -                          | -      | 282                        | 129    |
| <sup>103</sup> In | 3684                       | 114    | 9                          | 146    | 873                        | 118    |
| <sup>98</sup> Cd  | 0.03                       | 156    | -                          | -      | -                          | -      |
| <sup>100</sup> Cd | 394                        | 134    | -                          | -      | 725                        | 140    |
| <sup>101</sup> Cd | 4116                       | 125    | -                          | -      | 3482                       | 130    |
| <sup>102</sup> Cd | 8863                       | 116    | -                          | -      | 3182                       | 119    |
| <sup>100</sup> Ag | 6724                       | 126    | -                          | -      | 9409                       | 131    |

Table 1: MOCADI simulation results for various fragment settings. Energy given in MeV/u.



◆□▶ ◆□▶ ◆三≯ ◆□▶ ◆□▼

- 1. Run  $^{104}Sn$  and  $^{100}Cd$  in fall 2010.
- 2. Estimate yields for isotopes on the Z=50 and N=50 lines.
- 3. Submit addendum to proposal if yields reasonable.



・ロット (雪)・ (日)・ (日)・